Development of Diagnosis System for Rolling Bearings Faults on Real Time Based on FPGA
نویسندگان
چکیده
The real-time monitoring of events in an industrial plant is an advanced technique that presents the real conditions of operation of the machinery responsible for the manufacturing process. A predictive maintenance program includes various rotating machinery condition monitoring techniques of the machine to determine the conditions of failure. To increase the operational reliability and to reduce preventive maintenance, it is necessary an efficient tool for analysis and process monitoring, in real time, enabling the detection of incipient faults for rolling bearings. Over the past few years there has been a major technological developments related to digital system, including innovations in both hardware and software. These innovations enable the development of new design methodologies that take into account the ease of future modifications, upgrades and expansions of the designed system. This paper presents a study of new design tools for embedded digital systems based on open hardware architecture with reconfigurable logic. Will be discussed a case study in the area of fault detection of rolling bearings, as well as its implementation and testing.
منابع مشابه
Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملOnline Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines
Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کامل